Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
2.
Crit Care Med ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20239055

ABSTRACT

OBJECTIVES: Pulmonary fibrosis is a feared complication of COVID-19. To characterize the risks and outcomes associated with fibrotic-like radiographic abnormalities in patients with COVID-19-related acute respiratory distress syndrome (ARDS) and chronic critical illness. DESIGN: Single-center prospective cohort study. SETTING: We examined chest CT scans performed between ICU discharge and 30 days after hospital discharge using established methods to quantify nonfibrotic and fibrotic-like patterns. PATIENTS: Adults hospitalized with COVID-19-related ARDS and chronic critical illness (> 21 d of mechanical ventilation, tracheostomy, and survival to ICU discharge) between March 2020 and May 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We tested associations of fibrotic-like patterns with clinical characteristics and biomarkers, and with time to mechanical ventilator liberation and 6-month survival, controlling for demographics, comorbidities, and COVID-19 therapies. A total of 141 of 616 adults (23%) with COVID-19-related ARDS developed chronic critical illness, and 64 of 141 (46%) had a chest CT a median (interquartile range) 66 days (42-82 d) after intubation. Fifty-five percent had fibrotic-like patterns characterized by reticulations and/or traction bronchiectasis. In adjusted analyses, interleukin-6 level on the day of intubation was associated with fibrotic-like patterns (odds ratio, 4.40 per quartile change; 95% CI, 1.90-10.1 per quartile change). Other inflammatory biomarkers, Sequential Organ Failure Assessment score, age, tidal volume, driving pressure, and ventilator days were not. Fibrotic-like patterns were not associated with longer time to mechanical ventilator liberation or worse 6-month survival. CONCLUSIONS: Approximately half of adults with COVID-19-associated chronic critical illness have fibrotic-like patterns that are associated with higher interleukin-6 levels at intubation. Fibrotic-like patterns are not associated with longer time to liberation from mechanical ventilation or worse 6-month survival.

3.
Ann Intensive Care ; 13(1): 36, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2318382

ABSTRACT

BACKGROUND: The high-quality evidence on managing COVID-19 patients requiring extracorporeal membrane oxygenation (ECMO) support is insufficient. Furthermore, there is little consensus on allocating ECMO resources when scarce. The paucity of evidence and the need for guidance on controversial topics required an international expert consensus statement to understand the role of ECMO in COVID-19 better. Twenty-two international ECMO experts worldwide work together to interpret the most recent findings of the evolving published research, statement formulation, and voting to achieve consensus. OBJECTIVES: To guide the next generation of ECMO practitioners during future pandemics on tackling controversial topics pertaining to using ECMO for patients with COVID-19-related severe ARDS. METHODS: The scientific committee was assembled of five chairpersons with more than 5 years of ECMO experience and a critical care background. Their roles were modifying and restructuring the panel's questions and, assisting with statement formulation in addition to expert composition and literature review. Experts are identified based on their clinical experience with ECMO (minimum of 5 years) and previous academic activity on a global scale, with a focus on diversity in gender, geography, area of expertise, and level of seniority. We used the modified Delphi technique rounds and the nominal group technique (NGT) through three face-to-face meetings and the voting on the statement was conducted anonymously. The entire process was planned to be carried out in five phases: identifying the gap of knowledge, validation, statement formulation, voting, and drafting, respectively. RESULTS: In phase I, the scientific committee obtained 52 questions on controversial topics in ECMO for COVID-19, further reviewed for duplication and redundancy in phase II, resulting in nine domains with 32 questions with a validation rate exceeding 75% (Fig. 1). In phase III, 25 questions were used to formulate 14 statements, and six questions achieved no consensus on the statements. In phase IV, two voting rounds resulted in 14 statements that reached a consensus are included in four domains which are: patient selection, ECMO clinical management, operational and logistics management, and ethics. CONCLUSION: Three years after the onset of COVID-19, our understanding of the role of ECMO has evolved. However, it is incomplete. Tota14 statements achieved consensus; included in four domains discussing patient selection, clinical ECMO management, operational and logistic ECMO management and ethics to guide next-generation ECMO providers during future pandemic situations.

4.
Lancet Respir Med ; 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2299676

ABSTRACT

BACKGROUND: In patients receiving venovenous (VV) extracorporeal membrane oxygenation (ECMO) packed red blood cell (PRBC) transfusion thresholds are usually higher than in other patients who are critically ill. Available guidelines suggest a restrictive approach, but do not provide specific recommendations on the topic. The main aim of this study was, in a short timeframe, to describe the actual values of haemoglobin and the rate and the thresholds for transfusion of PRBC during VV ECMO. METHODS: PROTECMO was a multicentre, prospective, cohort study done in 41 ECMO centres in Europe, North America, Asia, and Australia. Consecutive adult patients with acute respiratory distress syndrome (ARDS) who were receiving VV ECMO were eligible for inclusion. Patients younger than 18 years, those who were not able to provide informed consent when required, and patients with an ECMO stay of less than 24 h were excluded. Our main aim was to monitor the daily haemoglobin concentration and the value at the point of PRBC transfusion, as well as the rate of transfusions. The practice in different centres was stratified by continent location and case volume per year. Adjusted estimates were calculated using marginal structural models with inverse probability weighting, accounting for baseline and time varying confounding. FINDINGS: Between Dec 1, 2018, and Feb 22, 2021, 604 patients were enrolled (431 [71%] men, 173 [29%] women; mean age 50 years [SD 13·6]; and mean haemoglobin concentration at cannulation 10·9 g/dL [2·4]). Over 7944 ECMO days, mean haemoglobin concentration was 9·1 g/dL (1·2), with lower concentrations in North America and high-volume centres. PRBC were transfused on 2432 (31%) of days on ECMO, and 504 (83%) patients received at least one PRBC unit. Overall, mean pretransfusion haemoglobin concentration was 8·1 g/dL (1·1), but varied according to the clinical rationale for transfusion. In a time-dependent Cox model, haemoglobin concentration of less than 7 g/dL was consistently associated with higher risk of death in the intensive care unit compared with other higher haemoglobin concentrations (hazard ratio [HR] 2·99 [95% CI 1·95-4·60]); PRBC transfusion was associated with lower risk of death only when transfused when haemoglobin concentration was less than 7 g/dL (HR 0·15 [0·03-0·74]), although no significant effect in reducing mortality was reported for transfusions for other haemoglobin classes (7·0-7·9 g/dL, 8·0-9·9 g/dL, or higher than 10 g/dL). INTERPRETATION: During VV ECMO, there was no universally accepted threshold for transfusion, but PRBC transfusion was invariably associated with lower mortality only when done with haemoglobin concentration of less than 7 g/dL. FUNDING: Extracorporeal Life Support Organization.

5.
Clin Chest Med ; 44(2): 335-346, 2023 06.
Article in English | MEDLINE | ID: covidwho-2275611

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has seen an increase in global cases of severe acute respiratory distress syndrome (ARDS), with a concomitant increased demand for extracorporeal membrane oxygenation (ECMO). Outcomes of patients with severe ARDS due to COVID-19 infection receiving ECMO support are evolving. The need for surge capacity, practical and ethical limitations on implementing ECMO, and the prolonged duration of ECMO support in patients with COVID-19-related ARDS has revealed limitations in organization and resource utilization. Coordination of efforts at multiple levels, from research to implementation, resulted in numerous innovations in the delivery of ECMO.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Pandemics
6.
Lancet Respir Med ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2284430

ABSTRACT

BACKGROUND: Venovenous extracorporeal membrane oxygenation (ECMO) can be considered for patients with COVID-19-associated acute respiratory distress syndrome (ARDS) who continue to deteriorate despite evidence-based therapies and lung-protective ventilation. The Extracorporeal Life Support Organization has emphasised the importance of patient selection; however, to better inform these decisions, a comprehensive and evidence-based understanding of the risk factors associated with poor outcomes is necessary. We aimed to summarise the association between pre-cannulation prognostic factors and risk of mortality in adult patients requiring venovenous ECMO for the treatment of COVID-19. METHODS: In this systematic review and meta-analysis, we searched MEDLINE and Embase from Dec 1, 2019, to April 14, 2022, for randomised controlled trials and observational studies involving adult patients who required ECMO for COVID-19-associated ARDS and for whom pre-cannulation prognostic factors associated with in-hospital mortality were evaluated. We conducted separate meta-analyses of unadjusted and adjusted odds ratios (uORs), adjusted hazard ratios (aHRs), and mean differences, and excluded studies if these data could not be extracted. We assessed the risk of bias using the Quality in Prognosis Studies tool and certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation approach. Our protocol was registered with the Open Science Framework registry, osf.io/6gcy2. FINDINGS: Our search identified 2888 studies, of which 42 observational cohort studies involving 17 449 patients were included. Factors that had moderate or high certainty of association with increased mortality included patient factors, such as older age (adjusted hazard ratio [aHR] 2·27 [95% CI 1·63-3·16]), male sex (unadjusted odds ratio [uOR] 1·34 [1·20-1·49]), and chronic lung disease (aHR 1·55 [1·20-2·00]); pre-cannulation disease factors, such as longer duration of symptoms (mean difference 1·51 days [95% CI 0·36-2·65]), longer duration of invasive mechanical ventilation (uOR 1·94 [1·40-2·67]), higher partial pressure of arterial carbon dioxide (mean difference 4·04 mm Hg [1·64-6·44]), and higher driving pressure (aHR 2·36 [1·40-3·97]); and centre factors, such as less previous experience with ECMO (aOR 2·27 [1·28-4·05]. INTERPRETATION: The prognostic factors identified highlight the importance of patient selection, the effect of injurious lung ventilation, and the potential opportunity for greater centralisation and collaboration in the use of ECMO for the treatment of COVID-19-associated ARDS. These factors should be carefully considered as part of a risk stratification framework when evaluating a patient for potential treatment with venovenous ECMO. FUNDING: None.

7.
J Intensive Care ; 11(1): 5, 2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2227278

ABSTRACT

A growing body of evidence supports the use of extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) refractory to maximal medical therapy. ARDS may develop in a proportion of patients hospitalized for coronavirus disease 2019 (COVID-19) and ECMO may be used to manage patients refractory to maximal medical therapy to mitigate the risk of ventilator-induced lung injury and provide lung rest while awaiting recovery. The mortality of COVID-19-related ARDS was variously reassessed during the pandemic. Veno-venous (VV) ECMO was the default choice to manage refractory respiratory failure; however, with concomitant severe right ventricular dysfunction, venoarterial (VA) ECMO or mechanical right ventricular assist devices with extracorporeal gas exchange (Oxy-RVAD) were also considered. ECMO has also been used to manage special populations such as pregnant women, pediatric patients affected by severe forms of COVID-19, and, in cases with persistent and seemingly irreversible respiratory failure, as a bridge to successful lung transplantation. In this narrative review, we outline and summarize the most recent evidence that has emerged on ECMO use in different patient populations with COVID-19-related ARDS.

8.
Crit Care ; 27(1): 3, 2023 01 05.
Article in English | MEDLINE | ID: covidwho-2196401

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a frequent and severe complication of both COVID-19-related acute respiratory distress syndrome (ARDS) and non-COVID-19-related ARDS. The COVID-19 Critical Care Consortium (CCCC) has generated a global data set on the demographics, management and outcomes of critically ill COVID-19 patients. The LUNG-SAFE study was an international prospective cohort study of patients with severe respiratory failure, including ARDS, which pre-dated the pandemic. METHODS: The incidence, demographic profile, management and outcomes of early AKI in patients undergoing invasive mechanical ventilation for COVID-19-related ARDS were described and compared with AKI in a non-COVID-19-related ARDS cohort. RESULTS: Of 18,964 patients in the CCCC data set, 1699 patients with COVID-19-related ARDS required invasive ventilation and had relevant outcome data. Of these, 110 (6.5%) had stage 1, 94 (5.5%) had stage 2, 151 (8.9%) had stage 3 AKI, while 1214 (79.1%) had no AKI within 48 h of initiating invasive mechanical ventilation. Patients developing AKI were older and more likely to have hypertension or chronic cardiac disease. There were geo-economic differences in the incidence of AKI, with lower incidence of stage 3 AKI in European high-income countries and a higher incidence in patients from middle-income countries. Both 28-day and 90-day mortality risk was increased for patients with stage 2 (HR 2.00, p < 0.001) and stage 3 AKI (HR 1.95, p < 0.001). Compared to non-COVID-19 ARDS, the incidence of shock was reduced with lower cardiovascular SOFA score across all patient groups, while hospital mortality was worse in all groups [no AKI (30 vs 50%), Stage 1 (38 vs 58%), Stage 2 (56 vs 74%), and Stage 3 (52 vs 72%), p < 0.001]. The time profile of onset of AKI also differed, with 56% of all AKI occurring in the first 48 h in patients with COVID-19 ARDS compared to 89% in the non-COVID-19 ARDS population. CONCLUSION: AKI is a common and serious complication of COVID-19, with a high mortality rate, which differs by geo-economic location. Important differences exist in the profile of AKI in COVID-19 versus non-COVID-19 ARDS in terms of their haemodynamic profile, time of onset and clinical outcomes.


Subject(s)
Acute Kidney Injury , COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Prospective Studies , Risk Factors , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Retrospective Studies , Intensive Care Units , Hospital Mortality
9.
ASAIO J ; 68(12): e224-e229, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2119145

ABSTRACT

Revised guidelines clarify indications for extracorporeal membrane oxygenation (ECMO) support in Coronavirus disease 2019 (COVID-19) patients with acute respiratory distress syndrome (ARDS). Limited data exist to compare clinical outcomes of COVID-19 ARDS patients to non-COVID-19-related ARDS patients when supported with ECMO. An observational propensity-matched study was performed to compare clinical and ECMO-related complications between COVID-19-related ARDS patients (COVID) and non-COVID-19-related ARDS (Control). COVID- patients cannulated from March 1st, 2020, through June 1st, 2021, were included and matched to patients from the historical cohort at our center from 2012 to 2020 based on age, body mass index (BMI), acute physiology and chronic health evaluation (APACHE) II score, and duration ECMO run. The primary outcome was complications during ECMO therapy. A total of 56 patients were propensity matched 1:1 with a mean age of 40.9 years, BMI 32.1 kg/m2, APACHE II score of 26.6, and duration of ECMO support of 22.6 days. In total 18 COVID-19 patients were observed to have more major bleeding complications (18 vs. 9, p = 0.03). Although not statistically significant, they also had more strokes (6 vs. 3) and required more chest tubes (13 vs. 8). Inpatient mortality was not different. ECMO support in COVID-19 patients is associated with more major bleeding complications, strokes, and chest tube placements. The use of ECMO in patients with COVID-19-related ARDS appears to be associated with an increased risk of complications.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Adult , Extracorporeal Membrane Oxygenation/adverse effects , COVID-19/complications , COVID-19/therapy , Propensity Score , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Hemorrhage , Retrospective Studies
10.
J Patient Saf ; 18(8): e1219-e1225, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-1985192

ABSTRACT

OBJECTIVE: It is unknown how hospital- and systems-level factors have impacted patient safety in the intensive care unit (ICU) during the COVID-19 pandemic. We sought to understand how the pandemic has exacerbated preexisting patient safety issues and created novel patient safety challenges in ICUs in the United States. METHODS: We performed a national, multi-institutional, mixed-methods survey of critical care clinicians to elicit experiences related to patient safety during the pandemic. The survey was disseminated via email through the Society of Critical Care Medicine listserv. Data were reported as valid percentages, compared by COVID caseload and peak of the pandemic; free-text responses were analyzed and coded for themes. RESULTS: We received 335 survey responses. On general patient safety, 61% felt that conditions were more hazardous when compared with the prepandemic period. Those who took care of mostly COVID-19 patients were more likely to perceive that care was more hazardous (odds ratio, 4.89; 95% CI, 2.49-9.59) compared with those who took care of mostly non-COVID-19 or no COVID-19 patients. In free-text responses, providers identified patient safety risks related to pandemic adaptations, such as ventilator-related lung injury, medication and diagnostic errors, oversedation, oxygen device removal, and falls. CONCLUSIONS: Increased COVID-19 case burden was significantly associated with perceptions of a less safe patient care environment by frontline ICU clinicians. Results of the qualitative analysis identified specific patient safety hazards in ICUs across the United States as downstream consequences of hospital and provider strain during periods of the COVID-19 pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Patient Safety , Critical Care , Intensive Care Units
11.
Intensive Care Med ; 48(10): 1326-1337, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982111

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is increasingly being used for patients with severe respiratory failure and has received particular attention during the coronavirus disease 2019 (COVID-19) pandemic. Evidence from two key randomized controlled trials, a subsequent post hoc Bayesian analysis, and meta-analyses support the interpretation of a benefit of ECMO in combination with ultra-lung-protective ventilation for select patients with very severe forms of acute respiratory distress syndrome (ARDS). During the pandemic, new evidence has emerged helping to better define the role of ECMO for patients with COVID-19. Results from large cohorts suggest outcomes during the first wave of the pandemic were similar to those in non-COVID-19 cohorts. As the pandemic continued, mortality of patients supported with ECMO has increased. However, the precise reasons for this observation are unclear. Known risk factors for mortality in COVID-19 and non-COVID-19 patients are higher patient age, concomitant extra-pulmonary organ failures or malignancies, prolonged mechanical ventilation before ECMO, less experienced treatment teams and lower ECMO caseloads in the treating center. ECMO is a high resource-dependent support option; therefore, it should be used judiciously, and its availability may need to be constrained when resources are scarce. More evidence from high-quality research is required to better define the role and limitations of ECMO in patients with severe COVID-19.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , Bayes Theorem , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Humans , Pandemics , Respiratory Distress Syndrome/therapy
14.
BMJ ; 377: e068723, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1896045

ABSTRACT

OBJECTIVE: To estimate the effect of extracorporeal membrane oxygenation (ECMO) compared with conventional mechanical ventilation on outcomes of patients with covid-19 associated respiratory failure. DESIGN: Observational study. SETTING: 30 countries across five continents, 3 January 2020 to 29 August 2021. PARTICIPANTS: 7345 adults admitted to the intensive care unit with clinically suspected or laboratory confirmed SARS-CoV-2 infection. INTERVENTIONS: ECMO in patients with a partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio <80 mm Hg compared with conventional mechanical ventilation without ECMO. MAIN OUTCOME MEASURE: The primary outcome was hospital mortality within 60 days of admission to the intensive care unit. Adherence adjusted estimates were calculated using marginal structural models with inverse probability weighting, accounting for competing events and for baseline and time varying confounding. RESULTS: 844 of 7345 eligible patients (11.5%) received ECMO at any time point during follow-up. Adherence adjusted mortality was 26.0% (95% confidence interval 24.5% to 27.5%) for a treatment strategy that included ECMO if the PaO2/FiO2 ratio decreased <80 mm Hg compared with 33.2% (31.8% to 34.6%) had patients received conventional treatment without ECMO (risk difference -7.1%, 95% confidence interval -8.2% to -6.1%; risk ratio 0.78, 95% confidence interval 0.75 to 0.82). In secondary analyses, ECMO was most effective in patients aged <65 years and with a PaO2/FiO2 <80 mm Hg or with driving pressures >15 cmH2O during the first 10 days of mechanical ventilation. CONCLUSIONS: ECMO was associated with a reduction in mortality in selected adults with covid-19 associated respiratory failure. Age, severity of hypoxaemia, and duration and intensity of mechanical ventilation were found to be modifiers of treatment effectiveness and should be considered when deciding to initiate ECMO in patients with covid-19.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , COVID-19/therapy , Humans , Oxygen , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
15.
Am J Respir Crit Care Med ; 205(12): 1382-1390, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1892012

ABSTRACT

The role of extracorporeal membrane oxygenation (ECMO) in the management of severe acute respiratory failure, including acute respiratory distress syndrome, has become better defined in recent years in light of emerging high-quality evidence and technological advances. Use of ECMO has consequently increased throughout many parts of the world. The coronavirus disease (COVID-19) pandemic, however, has highlighted deficiencies in organizational capacity, research capability, knowledge sharing, and resource use. Although governments, medical societies, hospital systems, and clinicians were collectively unprepared for the scope of this pandemic, the use of ECMO, a highly resource-intensive and specialized form of life support, presented specific logistical and ethical challenges. As the pandemic has evolved, there has been greater collaboration in the use of ECMO across centers and regions, together with more robust data reporting through international registries and observational studies. Nevertheless, centralization of ECMO capacity is lacking in many regions of the world, and equitable use of ECMO resources remains uneven. There are no widely available mechanisms to conduct large-scale, rigorous clinical trials in real time. In this critical care review, we outline lessons learned during COVID-19 and prior respiratory pandemics in which ECMO was used, and we describe how we might apply these lessons going forward, both during the ongoing COVID-19 pandemic and in the future.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Pandemics , SARS-CoV-2
16.
Perfusion ; : 2676591221096225, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1872076

ABSTRACT

BACKGROUND: A strategy that limits tidal volumes and inspiratory pressures, improves outcomes in patients with the acute respiratory distress syndrome (ARDS). Extracorporeal carbon dioxide removal (ECCO2R) may facilitate ultra-protective ventilation. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of venovenous ECCO2R in supporting ultra-protective ventilation in moderate-to-severe ARDS. METHODS: MEDLINE and EMBASE were interrogated for studies (2000-2021) reporting venovenous ECCO2R use in patients with moderate-to-severe ARDS. Studies reporting ≥10 adult patients in English language journals were included. Ventilatory parameters after 24 h of initiating ECCO2R, device characteristics, and safety outcomes were collected. The primary outcome measure was the change in driving pressure at 24 h of ECCO2R therapy in relation to baseline. Secondary outcomes included change in tidal volume, gas exchange, and safety data. RESULTS: Ten studies reporting 421 patients (PaO2:FiO2 141.03 mmHg) were included. Extracorporeal blood flow rates ranged from 0.35-1.5 L/min. Random effects modelling indicated a 3.56 cmH2O reduction (95%-CI: 3.22-3.91) in driving pressure from baseline (p < .001) and a 1.89 mL/kg (95%-CI: 1.75-2.02, p < .001) reduction in tidal volume. Oxygenation, respiratory rate and PEEP remained unchanged. No significant interactions between driving pressure reduction and baseline driving pressure, partial pressure of arterial carbon dioxide or PaO2:FiO2 ratio were identified in metaregression analysis. Bleeding and haemolysis were the commonest complications of therapy. CONCLUSIONS: Venovenous ECCO2R permitted significant reductions in ∆P in patients with moderate-to-severe ARDS. Heterogeneity amongst studies and devices, a paucity of randomised controlled trials, and variable safety reporting calls for standardisation of outcome reporting. Prospective evaluation of optimal device operation and anticoagulation in high quality studies is required before further recommendations can be made.

17.
Crit Care ; 26(1): 147, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1862141

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) has been used extensively for coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (ARDS). Reports early in the pandemic suggested that mortality in patients with COVID-19 receiving ECMO was comparable to non-COVID-19-related ARDS. However, subsequent reports suggested that mortality appeared to be increasing over time. Therefore, we conducted an updated systematic review and meta-analysis, to characterise changes in mortality over time and elucidate risk factors for poor outcomes. METHODS: We conducted a meta-analysis (CRD42021271202), searching MEDLINE, Embase, Cochrane, and Scopus databases, from 1 December 2019 to 26 January 2022, for studies reporting on mortality among adults with COVID-19 receiving ECMO. We also captured hospital and intensive care unit lengths of stay, duration of mechanical ventilation and ECMO, as well as complications of ECMO. We conducted random-effects meta-analyses, assessed risk of bias of included studies using the Joanna Briggs Institute checklist and evaluated certainty of pooled estimates using GRADE methodology. RESULTS: Of 4522 citations, we included 52 studies comprising 18,211 patients in the meta-analysis. The pooled mortality rate among patients with COVID-19 requiring ECMO was 48.8% (95% confidence interval 44.8-52.9%, high certainty). Mortality was higher among studies which enrolled patients later in the pandemic as opposed to earlier (1st half 2020: 41.2%, 2nd half 2020: 46.4%, 1st half 2021: 62.0%, 2nd half 2021: 46.5%, interaction p value = 0.0014). Predictors of increased mortality included age, the time of final patient enrolment from 1 January 2020, and the proportion of patients receiving corticosteroids, and reduced duration of ECMO run. CONCLUSIONS: The mortality rate for patients receiving ECMO for COVID-19-related ARDS has increased as the pandemic has progressed. The reasons for this are likely multifactorial; however, as outcomes for these patients evolve, the decision to initiate ECMO should include the best contextual estimate of mortality at the time of ECMO initiation.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Humans , Intensive Care Units , Pandemics , Respiratory Distress Syndrome/therapy
18.
Crit Care Med ; 50(9): 1360-1370, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1860940

ABSTRACT

OBJECTIVES: The use of extracorporeal membrane oxygenation (ECMO) in patients with COVID-19 has been supported by major healthcare organizations, yet the role of specific management strategies during ECMO requires further study. We sought to characterize tracheostomy practices, complications, and outcomes in ECMO-supported patients with acute respiratory failure related to COVID-19. DESIGN: Retrospective cohort study. SETTING: ECMO centers contributing to the Extracorporeal Life Support Organization Registry. PATIENTS: Patients 16 years or older receiving venovenous ECMO for respiratory support for: 1) COVID-19 in 2020 and 2021 (through October 2021) and 2) pre-COVID-19 viral pneumonia in 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We identified 7,047 patients who received ECMO support for acute respiratory failure related to COVID-19. A total of 32% of patients were recorded as having a tracheostomy procedure during ECMO, and 51% had a tracheostomy at some point during hospitalization. The frequency of tracheostomy was similar in pre-COVID-19 viral pneumonia, but tracheostomies were performed 3 days earlier compared with patients with COVID-19 (median 6.7 d [interquartile range [IQR], 3.0-12.0 d] vs 10.0 d [IQR, 5.0-16.5 d]; p < 0.001). More patients were mobilized with pre-COVID-19 viral pneumonia, but receipt of a tracheostomy during ECMO was associated with increased mobilization in both cohorts. More bleeding complications occurred in patients who received a tracheostomy, with 9% of patients with COVID-19 who received a tracheostomy reported as having surgical site bleeding. CONCLUSIONS: Tracheostomies are performed in COVID-19 patients receiving ECMO at rates similar to practices in pre-COVID-19 viral pneumonia, although later during the course of ECMO. Receipt of a tracheostomy was associated with increased patient mobilization. Overall mortality was similar between those who did and did not receive a tracheostomy.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Humans , Registries , Retrospective Studies , Tracheostomy/methods
19.
Crit Care ; 26(1): 141, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1846858

ABSTRACT

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Subject(s)
COVID-19 Drug Treatment , Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Neuromuscular Blocking Agents/therapeutic use , Propensity Score , Respiration, Artificial , Respiratory Distress Syndrome/drug therapy
20.
Intensive Care Med ; 48(1): 1-15, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1800370

ABSTRACT

Rates of survival with functional recovery for both in-hospital and out-of-hospital cardiac arrest are notably low. Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a modality to improve prognosis by augmenting perfusion to vital end-organs by utilizing extracorporeal membrane oxygenation (ECMO) during conventional CPR and stabilizing the patient for interventions aimed at reversing the aetiology of the arrest. Implementing this emergent procedure requires a substantial investment in resources, and even the most successful ECPR programs may nonetheless burden healthcare systems, clinicians, patients, and their families with unsalvageable patients supported by extracorporeal devices. Non-randomized and observational studies have repeatedly shown an association between ECPR and improved survival, versus conventional CPR, for in-hospital cardiac arrest in select patient populations. Recently, randomized controlled trials suggest benefit for ECPR over standard resuscitation, as well as the feasibility of performing such trials, in out-of-hospital cardiac arrest within highly coordinated healthcare delivery systems. Application of these data to clinical practice should be done cautiously, with outcomes likely to vary by the setting and system within which ECPR is initiated. ECPR introduces important ethical challenges, including whether it should be considered an extension of CPR, at what point it becomes sustained organ replacement therapy, and how to approach patients unable to recover or be bridged to heart replacement therapy. The economic impact of ECPR varies by health system, and has the potential to outstrip resources if used indiscriminately. Ideally, studies should include economic evaluations to inform health care systems about the cost-benefits of this therapy.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Out-of-Hospital Cardiac Arrest , Adult , Cardiopulmonary Resuscitation/methods , Cost-Benefit Analysis , Extracorporeal Membrane Oxygenation/methods , Humans , Out-of-Hospital Cardiac Arrest/therapy
SELECTION OF CITATIONS
SEARCH DETAIL